PERVAPORATION

Hydrophilic ceramic membrane and Pilot plant system

Pervaporation is a process for the separation of mixtures by partial vaporisation

Innovating for the sustainability and reliability of industrial processes, ORELIS Environnement has various capabilities in the field of pervaporation:

- ORELIS has experiences in the applications of dehydration: solvent recycling by dehydration (Pharmaceutical), concentration of aromatic mixtures (Fine chemistry) and improvement of esterification processes by selectively eliminating water from the reaction mixtures (Chemicals).
- ORELIS has access to the Hybsi® technology of hydrophilic ceramic pervaporation membranes which allows water to be separated from solvents and organic compounds
- ORELIS also has a mobile pilot plant system for feasibility and process design studies

ALSYS experiences in the field of pervaporation technology

Industries	Applications	Benefits
Pharmaceutical	Solvent mixtures recycling by dehydration	 High selectivity Low energy consumption
ChemicalsPetrochemicalsBiofuels	 Alcohols dehydration (IPA, Butanol) Esterification mixtures dehydration Azeotropic breaking Solvent recycling 	 Implementation with minimum process modification Flexible for batch or continuous processes
Fine chemistryFlavor & FragrancesFood & Beverage	Concentration of aromatic mixtures	Process intensificationAromatic stability

Main benefits of pervaporation

- Vs. distillation:
- 30% less energy: latent heat only in the permeate stream
- 30% less CAPEX: no pressure swing required to break azeotrope
- Vs. activated carbon:
- No additional steps
- No waste generated

Performances with HYBSI® hydrophilic ceramic membrane (hybrid silica)

Feed composition	Temperature (°C)	Flux (kg/h.m²)	Permeate composition
95% Butanol, 5% Water	80	3,5	2% Butanol, 98% Water
90% Ethanol, 10% Water	75	3,5	20% Ethanol, 80% Water
88% Ethanol, 5% Methyl isobutyl ketone, 7% Water	70	2,5	80% Water
92% Ethyl acetate, 2% Ethanol, 2% Toluene, 1% Acetic acid, 3% Water	70	1,5	87% Water
Ester acrylate, Alcohol, Acrylic acid, 15% Water	75	12	Ester acrylate, Alcohol, Acrylic acid, 90% Water
Water, 30g/L Polyphenols, 50g/L Suspended solids	40	2,5	Containing traces of organic compounds

Contacts:

Europe: +33 (0)4 66 85 95 36 North America: +1 857 504 2250 Asia: +86 (0)21 6350 3377

PERVAPORATION PILOT PLANT and LAB PILOT systems

Pervaporation pilot plant with industrial membranes

(1): Feed

Max	Max
Temperature	Pressure
175°C	8 bar

pH 2 to 14

(2): Membrane module

1 membrane	7 membranes	
0.15 m ²	1.05 m ²	

Control interface

(3) & (4): Permeate

Condenser	Cold trap
0 to -50°C	- 180°C

What makes PERVAPORATION PILOT PLANT unique?

- → Compact design, small footprint, large membrane area for a small feed volume
- → Easy integration into an industrial plant
- → Versatile pilot plant
- → Could work with vapor or liquid feed
- → Extrapolation / Scaling-up: x 100
- → Extremely stable process conditions
- → Fast and complete dehydration of organic mixtures (100 ppm of water possible at the end of the purification)
- → High water permeation flowrate > 4 kg/h
- → Compatible with most types of solvents
- → Continuous permeate condensation

Versatile pilot plant

- Ceramic or polymeric membrane
- Pervaporation <u>or</u> vapor permeation
- Dehydration at stable conditions
 or extremely quick purification
- Semi-automatic <u>or</u> automatic control

Pervaporation lab-pilot with laboratory membranes

- (1) Condensation with liquefied nitrogen
- (2) Pervaporation module with ceramic membranes with single channel Lenght: 400 mm Diameter: 10 mm
- (3) Feed pump
- (4) Feed tank
- (5) Condensation with cooling fluid

